Filip Skogh

EDUCATION

Website: filipskogh.com Email: fskogh@ethz.ch

Zürich, Switzerland • ETH Zürich SEMP student; Master of Science - Computer Science Sep 2022 - Sep 2023

o Thesis: Video Object Segmentation Without Mask Annotations

o Activities: ETH Analytics Club

Courses: Natural Language Processing, Advanced Machine Learning, Computer Vision

Gothenburg, Sweden • Chalmers University of Technology Master of Science - Data Science and AI Aug 2021 - Jun 2022

o **GPA**: 4.8/5.0

• Donationsstipendierna: Scholarship for the "industrious and talented students at Chalmers"

• Nanyang Technological University Exchange; Bachelor of Science - Computer Science

Singapore Jan-Jun 2020

Courses: Digital Signal Processing, Cryptography, Operating Systems, Computer Networks, Software Engineering

• Luleå University of Technology Bachelor of Science - Computer Science

Sweden Aug 2018 - Jun 2021

• **GPA**: 5.0/5.0

• Thesis: Spatiotemporal Fidelity of a Metapopulational Model Evaluated on the COVID-19 Pandemic in Sweden

• Teaching assistant: Grading and helping students in object oriented programming

EXPERIENCE

• Master Thesis Student Computer Vision Lab - ETH Zürich

Zürich, Switzerland Feb 2023 - Sep 2023

• Objective: Reduce the annotation burden for video object segmentation.

- Solution: Implemented a loss function that utilize spatial and temporal information between video frames to derive a consistency based loss.
- o Demonstrated a 90% relative performance for the model trained with bounding boxes only to the oracle model trained in a fully-supervised way with complete masks.
- Research Intern University of Massachusetts Amherst

MA, United States Jun 2022 - Sep 2022

- o Developed a server load scheduler that route requests to data-centers such that carbon is minimized while satisfying latency constraint.
- Turned vague idea into a formal optimization problem and then into a Python proof of concept.
- o Demonstrated a 30-70% reduction in total carbon spending in Europe and the US by simulating the scheduler with regional request data from Akamai and real carbon intensity data.

Stockholm, Sweden Jun 2019 - Aug 2021 (Every summer)

- Security Analyst Orange Cyberdefense
 - Built time series model for prediction and discovered a strong seasonal pattern in phishing attacks. • Developed automated threat response scripts that blocks ransomware, C&C servers and take
 - snapshots for forensics. Those scripts were pushed world-wide on over 50.000 end points. o Crafted Splunk queries for real-time dashboards showing open SMB-servers, ssh connections, etc.
 - o Developed scripts to periodically scan network using nmap and masscan.

Projects

- Exploring Transformers: Implemented the Transformer-decoder in PyTorch with new techniques such as KV-cache for improved inference speed.
- LLM fine-tuning and inference: Fine-tuned the open-source LLM Falcon-40b using LoRA locally.
- o Blockchain implementation: Implemented parts of the Bitcoin protocol from scratch to create, (i) a wallet address derived from an elliptic curve public key, (ii) a signed transaction which can be broadcasted to the network, and (iii) a block verifier.
- Google Developer Student Club: Learned how to build an interactive 3D learning game in Unity3D C# by building a hospital simulator. The project idea was conceived by medical professors prompted by the pandemic and was aimed to simulate medical students' practicum. During the project I worked in close contact with medical professionals and translated medical procedures into implementable scenarios in-game.
- o Game reverse engineering: C++ project developed continuously for three years. Taught myself java internals, java native interface and reflection. Reverse engineered encryption protocols and ciphers to intercept traffic at packet level.
- $\circ \ \mathbf{RANSAC} : \mathbf{Matlab} \ \mathbf{implementation} \ \mathbf{of} \ \mathbf{RANSAC} \ \mathbf{with} \ \mathbf{optimal} \ \mathbf{hypothesis} \ \mathbf{testing} \ \mathbf{that} \ \mathbf{minimizes} \ \mathbf{the} \ \mathbf{number} \ \mathbf{of} \ \mathbf{tests}$ performed. Project was motivated by the scarcity of available implementation and was based on the original white paper.
- $\circ n \times n$ Tic-Tac-Toe Player: Created an unbeatable player by implementing the Monte Carlo Tree Search algorithm for efficient game-tree searching.

TECHNICAL SKILLS

o Languages: Python, C++, Java, C, Matlab

PyTorch, Hugging Face, Map-Reduce, PySpark, OpenCV, Flask, Java Native Interface, MySQL Frameworks:

Miscellaneous: Slurm, Debugging, Docker, Git, Regex